Syllabus On discipline (PVE5306) High Energy Physics for specialty "6M060400-Physics" Autumn semester, 2018-2019 academic year,

Course 2

Academic course information

Discipline's	Discipline's	Туре	No. of hours per week			Number of	ECTS
code	title		Lect.	Pract.	Lab.	credits	
PVE 5306	Physics of high	Elective	2	1	0	3	5
	energy						
Lecturer	Takibayev N.Zh., d.s.pm., academic		nic Office	hours	Scheduled		
	of NAS RK, professor						
e-mail	E-mail: <u>takibayev@gmail.com</u>						
Telephone	Telephone: 2	925-133;	3; 8-777-704-		ry	319	
number	0396						

Academic	Type of course "High Energy Physics" is elective component and its purpose:			
presentation of	Theoretical Physics.			
the course	The aim of the course: to learn to form a system of competences in the context			
	ofqualification requirements. As a result of the discipline, the student will be able			
	to:			
	– analyze educational situation and offer direction to solve it;			
	– use methods (research, calculation, analysis, etc.) inherent to the field of study			
	(specifically) individually or in a0 group teaching and research activities;			
	– synthesize, interpret and evaluate the learning outcomes of discipline, modules,			
	midterm exam content (specifically);			
	– constructive educational and social interaction and cooperation in the group;			
	– propose to consider a problem, to reason its importance;			
	– accept criticism and to criticize;			
	– workin a team;			
	- recognize the role of taken course in the implementation of individual learning			
	paths. The system of descriptor verbs must be used during the formation of			
	competences			
	- active and interactive methods is recommended to ensure deeper understanding			
	and learning of educational material and to achieve learning outcomes of the			
	course (individual researches, group projects, case studies and there methods).			
Prerequisites	Mathematical analysis, the theory of functions of complex variables, differential			
	equations, mathematical physics, statistical physics, physics of elementary			
	particles.			
Post requisites	Taken knowledge will be used in research work.			
Information	Literatures (with an indication of the authors and data output), the			
resources	availability(number), software and consumables with information about where			
	you can getthem.			
	1. D.H. Perkins, Introduction to High Energy Physics, Cambridge University Press, 2000.			
	2. Hochenergiephysik, Addison-Wesley, 1990. (out of press)			
	3. B. Povhu.a., Teilchen und Kerne, Springer, 8. Auflage, 2009. (Paperback)			
	4. Encyclopedia of Applied High Energy and Particle Physics, Ed. R. Stock, Wiley 2009.			

Academic	Academic Behavior Rules:			
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.			
course in the	Without advance notice of absence and undue tardiness to the teacher is			
context of	estimated at 0 points.			
university	Academic values:			
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge			
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU			
	Student's honor)			
Evaluation and	Criteria-based evaluation:			
attestation	Assessment of learning outcomes in correlation withdescriptors (verification of			
policy	competence formation during midterm control and examinations).			
	Summative evaluation:			
	evaluation of the presence and activity of the work in the classroom; assessment			
	of the assignment, independent work of students.			
	The formula for calculating the final grade.			
	Final grade for the discipline = $\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$			
	Below are the minimum estimates in percentage terms:			
	below are the minimum estimates in percentage terms. 50' = 1000', A $000' = 0.40'$, A			
	5% - 100%: A 90% - 94%: A-			
	85% - 89%: B+ 80% - 84%: B 75% - 79%: B-			
	70% - 74%: C+ 65% - 69%: C 60% - 64%: C-			
	55% - 59%: D+ 50% - 54%: D- 0% -49%: F			

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, MSWT)	Number	Maximum	
ks		of hours	score	
	Module 1			
1	Lecture-1 (L-1). Introduction: matter and forces. Matter	1	-	
	content of the Universe. Forces, Grand unified theories			
	Seminar -1 (S-1). The weak force. The strong force. Grand	1	5	
	unified theories			
2	L-2.Experimental possibilities. Neutrino experiments. High-energy	1	-	
	colliding-beam experiments			
	S-2.Bubble chambers. High-energy colliding-beam experiments	1	5	
3	L-3. Heisenberg and interaction picture. Harmonic oscillator using Dirac	1	-	
	operators			
	S-3.Quick introduction: four-vectors, Lorentz transformation, light cone	1	5	
	MSWT 1. Assignment submission № 1: Relativistic kinematics, centre-	1	20	
	of-mass energy, Mandelstam variables			
4	L-4.The Klein-Gordon equation.Feynman interpretation of	1	-	
	negative energy solutions			
	S-4.Definition of the cross section.Crosssectionevaluation.	1	5	
Module 2				
5	L-5. Relativistic spin-1/2 particles. Pauli matrices, commuta-	1	-	
	tion relations. The Diracequation, α , β and γ matrices.			
	S-5.Solutions of the Dirac equation.	1	5	
	MSWT 2 Assignment submission № 2: The adjoint Dirac	1	20	
	equation and the conserved probability current			

Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeksareincludedintosyllabus (assignmentsubmission)			
	Total		100
	Exam		100
	2 nd Intermediate Control (IC2)		100
	formulation of the Higgs Mechanism for SU(2) \otimes U(1)		
	MSWT7. Assignment submission № 7: The Weinberg	1	25
	S-15.Coupling of Higgs to the W and Z	1	5
15	L-15.The Higgs model	1	_
	S-14.Scalar field.Complex field	1	5
14	L-14. Spontaneous symmetry breaking	1	-
	MSWT 6. Assignment submission № 6: Boson-Gluon fusion	1	20
	S-13. Local gauge invariance and OCD	1	5
13	L-13. The Strong Force.	1	_
14	S-12. νq scattering. Charged Pion and Kaon decav	1	5
12	electromagnetic field	1	_
	MSWT 5. Assignment submission № 5: An electron in an	1	10
	S-11.Neutral current processes.	1	5
	Salammodel.		
11	L-11. Neutral current weak interactions. Weinberg-	1	-
	S-10. Relation between G_F and g_w . O(n), U(n) and SU(n).	1	5
10	L-10. Charge current weak interactions. π/K decay to e/μ .	1	-
	unstable virtual vector bosons		
	MSWT 4. Assignment submission № 4: Propagator for	1	10
	S-9. Propagator for virtual vector bosons.	1	5
9	L-9. Massive spin-1 particles. Polarization vectors.	1	-
	Module 3		1
	S-8. Compton scattering.	1	5
8	L-8. e^+e^- annihilation to $\mu^+\mu^-$	1	-
8	Midterm (MT)		100
	1 st Intermediate Control (IC1)		100
	the photon propagator. Real and virtual photons	1	20
	MSWT 3 Assignment submission No 3: Virtual photons and	1	25
	S -7 Helicity conservation at high energies	1	5
7	S6. Spin, γ^{2} and hencity.	1	3
0	Lo.e μ scattering. Electron in an EW field.	1	-
6	I 6 e ⁻ u ⁻ scattering Electron in an EM field	1	

Lecturer	TakibayevN.Zh.
Head of the Department	Abishev M.E.
Chairman of the Faculty Methodical Bureau	Gabdullina A.T.